Fit results: Summer 2013 (post-EPS13)

Parameter Input value Full fit SM Prediction
\bar{\rho} - 0.127 \pm 0.023 -
\bar{\eta} - 0.353 \pm 0.014 -
\rho - 0.13 \pm 0.024 -
\eta - 0.362 \pm 0.014 -
A - 0.822 \pm 0.012 -
\lambda 0.2253 \pm 0.0009 0.22535 \pm 0.00065 -
|V_{ub}| 0.00375 \pm 0.00046 0.00362 \pm 0.00012 0.00361 \pm 0.00012
|V_{cb}| 0.0409 \pm 0.001 0.04172 \pm 0.00056 0.04212 \pm 0.0007
\sin\theta_{12} - 0.22535 \pm 0.00059 -
\sin\theta_{23} - 0.04173 \pm 0.00057 -
\sin\theta_{13} - 0.00362 \pm 0.00012 -
\delta [^{\circ}] - 70.3 \pm 3.5 -
m_{b}\mathrm{ [GeV/c^{2}]} 4.19 \pm 0.04 - -
m_{c}\mathrm{ [GeV/c^{2}]} 1.28 \pm 0.04 - -
m_{t}\mathrm{ [GeV/c^{2}]} 164.1 \pm 0.9 164.1 \pm 0.9 161.8 \pm 7.1
\Delta m_{s} \mathrm{[ps^{-1}]} 17.768 \pm 0.024 17.768 \pm 0.024 17.4 \pm 1.1
\Delta m_{d} \mathrm{[ps^{-1}]} 0.51 \pm 0.004 - -
\Delta m_{K} \mathrm{[ps^{-1}]} 1.8 \pm 1.8 - -
f_{B_{s}} 0.2277 \pm 0.0045 0.2272 \pm 0.0039 0.2266 \pm 0.0075
f_{B_{s}}/f_{B_{d}} 1.202 \pm 0.022 1.199 \pm 0.021 1.183 \pm 0.061
B_{B_{s}}/B_{B_{d}} 1.06 \pm 0.11 1.109 \pm 0.063 1.136 \pm 0.077
B_{B_{s}} 0.875 \pm 0.04 0.876 \pm 0.029 0.876 \pm 0.046
B_{k} 0.766 \pm 0.010 0.766 \pm 0.011 0.836 \pm 0.078
\alpha [^{\circ}] 90.9 \pm 8.0 87.7 \pm 3.3 86.3 \pm 3.8
\beta [^{\circ}] - 22.01 \pm 0.86 24.4 \pm 1.8
\sin(2\beta) 0.68 \pm 0.023 0.695 \pm 0.021 0.754 \pm 0.042
\cos(2\beta) 0.87 \pm 0.13 0.719 \pm 0.021 0.66 \pm 0.048
2\beta+\gamma [^{\circ}] -89 \pm 54 \text{ and } 90 \pm 54 114.2 \pm 3.4 114.4 \pm 3.4
\gamma [^{\circ}] -109.9 \pm 7.1 \text{ and } 70.1 \pm 7.1 70.3 \pm 3.5 69.8 \pm 3.9
|\epsilon_{k}| 2.228 \pm 0.011 2.228 \pm 0.039 2.04 \pm 0.19
B(B\rightarrow\tau\nu), 10^{-4} 1.14 \pm 0.22 0.834 \pm 0.071 0.806 \pm 0.07
J_{cp}, 10^{-5} - 3.12 \pm 0.09 -
B(B_{s}\rightarrow ll), 10^{-9} 2.9 \pm 0.7 3.87 \pm 0.16 3.91 \pm 0.16
B(B_{d}\rightarrow ll), 10^{-9} 0.37 \pm 0.15 0.1142 \pm 0.0069 0.1145 \pm 0.007
\Delta\Gamma_{d}/\Gamma_{d} - 0.00516 \pm 0.00037 -
\Delta\Gamma_{s}/\Gamma_{s} - 0.152 \pm 0.013 -
\beta_{s} [^{\circ}] - 1.073 \pm 0.042 -

The fit results for all the nine CKM elements are V_{CKM}=\left(\begin{array}{ccc} (0.97426 \pm 0.00014) & (0.22535 \pm 0.00059) & (0.00362 \pm 0.00012)e^{i(-70.2 \pm 3.3)^\circ}\\ ( -0.22525 \pm 0.00059)e^{i(0.0352 \pm 0.001)^\circ} & (0.97342 \pm 0.00013)e^{i(-0.00188333 \pm 0.00005)^\circ} & (0.04172 \pm 0.00056) \\ (0.00884 \pm 0.00019)e^{i(-22.0 \pm 0.8)^\circ} & ( -0.04092 \pm 0.00057)e^{i(1.071 \pm 0.042)^\circ} & (0.999121 \pm 0.000021)\end{array}\right)




Full fit result for \,\bar{\rho}
0.127 \pm 0.023
95% prob:[0.085, 0.175]
99% prob:[0.062, 0.197]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\bar{\eta}
0.353 \pm 0.014
95% prob:[0.326, 0.381]
99% prob:[0.314, 0.396]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\bar{\rho} - \bar{\eta}

\bar\rho=0.127 \pm 0.023
\bar\eta=0.353 \pm 0.014
EPS - PDF - PNG - JPG - GIF



Angles only result for \,\bar{\rho} - \bar{\eta}

\bar\rho=0.134 \pm 0.029
\bar\eta=0.339 \pm 0.017
EPS - PDF - PNG - JPG - GIF



Sides only result for \,\bar{\rho} - \bar{\eta}

\bar\rho=0.144 \pm 0.046
\bar\eta=0.376 \pm 0.030
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\rho
0.13 \pm 0.024
95% prob:[0.087, 0.179]
99% prob:[0.064, 0.202]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\eta
0.362 \pm 0.014
95% prob:[0.334, 0.390]
99% prob:[0.322, 0.406]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,A
0.822 \pm 0.012
95% prob:[0.798, 0.846]
99% prob:[0.785, 0.858]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,\lambda
0.2253 \pm 0.0009
95% prob:[0.2235, 0.2271]
99% prob:[0.2226, 0.228]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\lambda
0.22535 \pm 0.00065
95% prob:[0.2241, 0.2266]
99% prob:[0.2235, 0.2273]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,|V_{ub}|
Gaussian likelihood used
0.00375 \pm 0.00046

EPS - PDF - PNG - JPG - GIF



Full Fit result for \,|V_{ub}|
0.00362 \pm 0.00012
95% prob:[0.00339, 0.00388]
99% prob:[0.00328, 0.00402]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,|V_{ub}|
0.00361 \pm 0.00012
95% prob:[0.00337, 0.00387]
99% prob:[0.00326, 0.00402]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,|V_{ub}|



EPS - PDF - PNG - JPG - GIF




Fit Input for \,|V_{cb}|
Gaussian likelihood used
0.0409 \pm 0.001

EPS - PDF - PNG - JPG - GIF



Full Fit result for \,|V_{cb}|
0.04172 \pm 0.00056
95% prob:[0.04059, 0.04285]
99% prob:[0.04006, 0.04341]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,|V_{cb}|
0.04204 \pm 0.00069
95% prob:[0.04072, 0.04347]
99% prob:[0.04003, 0.0441]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,|V_{cb}|



EPS - PDF - PNG - JPG - GIF




Full fit result for \,\sin\theta_{12}
0.22535 \pm 0.00059
95% prob:[0.22415, 0.22663]
99% prob:[0.22346, 0.22722]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\sin\theta_{23}
0.04173 \pm 0.00057
95% prob:[0.04060, 0.04286]
99% prob:[0.04006, 0.04341]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\sin\theta_{13}
0.00362 \pm 0.00012
95% prob:[0.00339, 0.00388]
99% prob:[0.00328, 0.00402]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\delta [^{\circ}]
70.3 \pm 3.5
95% prob:[63.1, 76.5]
99% prob:[60.5, 79.7]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,m_{t}\mathrm{ [GeV/c^{2}]}
Gaussian likelihood used
164.1 \pm 0.9

EPS - PDF - PNG - JPG - GIF



Full Fit result for \,m_{t}\mathrm{ [GeV/c^{2}]}
164.1 \pm 0.9
95% prob:[162., 165.]
99% prob:[161., 166.]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,m_{t}\mathrm{ [GeV/c^{2}]}
161.8 \pm 7.1
95% prob:[148.7, 176.8]
99% prob:[140.2, 142.2] U [143.9, 184.5]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,m_{t}\mathrm{ [GeV/c^{2}]}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,\Delta m_{s} \mathrm{[ps^{-1}]}
Gaussian likelihood used
17.768 \pm 0.024

EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\Delta m_{s} \mathrm{[ps^{-1}]}
17.768 \pm 0.024
95% prob:[17.72, 17.81]
99% prob:[17.69, 17.84]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\Delta m_{s} \mathrm{[ps^{-1}]}
17.4 \pm 1.1
95% prob:[15.2, 19.7]
99% prob:[14.2, 20.9] U [20.9, 21]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,\Delta m_{s} \mathrm{[ps^{-1}]}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,f_{B_{s}}
Gaussian likelihood used
0.2277 \pm 0.0045

EPS - PDF - PNG - JPG - GIF



Full Fit result for \,f_{B_{s}}
0.2272 \pm 0.0039
95% prob:[0.2201, 0.2349]
99% prob:[0.2165, 0.2388]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,f_{B_{s}}Sorted ascending
0.2266 \pm 0.0075
95% prob:[0.2148, 0.2409]
99% prob:[0.2085, 0.2469]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,f_{B_{s}}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,f_{B_{s}}/f_{B_{d}}
Gaussian likelihood used
1.202 \pm 0.022

EPS - PDF - PNG - JPG - GIF



Full Fit result for \,f_{B_{s}}/f_{B_{d}}
1.199 \pm 0.021
95% prob:[1.159, 1.242]
99% prob:[1.136, 1.263]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,f_{B_{s}}/f_{B_{d}}
1.183 \pm 0.061
95% prob:[1.074, 1.321]
99% prob:[1.028, 1.402]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,f_{B_{s}}/f_{B_{d}}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,B_{B_{s}}/B_{B_{d}}
Gaussian likelihood used
1.06 \pm 0.11

EPS - PDF - PNG - JPG - GIF



Full Fit result for \,B_{B_{s}}/B_{B_{d}}
1.109 \pm 0.063
95% prob:[0.99, 1.234]
99% prob:[0.939, 1.3]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,B_{B_{s}}/B_{B_{d}}
1.136 \pm 0.077
95% prob:[0.983, 1.287]
99% prob:[0.908, 1.381]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,B_{B_{s}}/B_{B_{d}}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,B_{B_{s}}
Gaussian likelihood used
0.875 \pm 0.04

EPS - PDF - PNG - JPG - GIF



Full Fit result for \,B_{B_{s}}
0.876 \pm 0.029
95% prob:[0.818, 0.936]
99% prob:[0.791, 0.97]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,B_{B_{s}}
0.876 \pm 0.046
95% prob:[0.795, 0.976]
99% prob:[0.761, 1.033]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,B_{B_{s}}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,B_{k}
0.766 \pm 0.010
95% prob:[0.746, 0.787]
99% prob:[0.74, 0.794]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,B_{k}
0.766 \pm 0.011
95% prob:[0.747, 0.787]
99% prob:[0.739, 0.798]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,B_{k}
0.836 \pm 0.078
95% prob:[0.692, 1.002]
99% prob:[0.632, 1.099]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,B_{k}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,\alpha [^{\circ}]
90.9 \pm 8.0
95% prob:[78.5, 103.] U [162, 170.]
99% prob:[72.6, 110.] U [158, 172.] U [178., 180]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\alpha [^{\circ}]
87.7 \pm 3.3
95% prob:[81.6, 94.4]
99% prob:[78.1, 97.6]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\alpha [^{\circ}]
86.3 \pm 3.8
95% prob:[78.8, 94.5]
99% prob:[74.8, 98.2]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,\alpha [^{\circ}]



EPS - PDF - PNG - JPG - GIF




Full Fit result for \,\beta [^{\circ}]
22.01 \pm 0.86
95% prob:[20.4, 23.8]
99% prob:[19.6, 24.8]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\beta [^{\circ}]
24.4 \pm 1.8
95% prob:[20.8, 28.2]
99% prob:[19.2, 30.1]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,\sin(2\beta)
0.68 \pm 0.023
95% prob:[0.635, 0.729]
99% prob:[0.613, 0.755]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\sin(2\beta)
0.695 \pm 0.021
95% prob:[0.655, 0.74]
99% prob:[0.635, 0.763]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\sin(2\beta)
0.754 \pm 0.042
95% prob:[0.67, 0.836]
99% prob:[0.625, 0.871]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,\sin(2\beta)



EPS - PDF - PNG - JPG - GIF




Fit Input for \,\cos(2\beta)
0.87 \pm 0.13
95% prob:[0.44, 0.99]
99% prob:[0.12, 0.99]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\cos(2\beta)
0.719 \pm 0.021
95% prob:[0.674, 0.757]
99% prob:[0.648, 0.773]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\cos(2\beta)
0.66 \pm 0.048
95% prob:[0.555, 0.748]
99% prob:[0.498, 0.784]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,\cos(2\beta)



EPS - PDF - PNG - JPG - GIF




Fit Input for \,2\beta+\gamma [^{\circ}]
-89 \pm 54 \text{ and } 90 \pm 54
95% prob:[-173, -6.4] U [6.8, 173.]
99% prob:[-179, -0.6] U [0.5, 180]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,2\beta+\gamma [^{\circ}]
114.2 \pm 3.4
95% prob:[107.5, 120.8]
99% prob:[103.9, 124]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,2\beta+\gamma [^{\circ}]
114.4 \pm 3.4
95% prob:[107.7, 121]
99% prob:[104.1, 104.3] U [104.5, 124.4]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,2\beta+\gamma [^{\circ}]



EPS - PDF - PNG - JPG - GIF




Fit Input for \,\gamma [^{\circ}]
-109.9 \pm 7.1 \text{ and } 70.1 \pm 7.1
95% prob:[-124, -96.] U [55.7, 83.7]
99% prob:[-132, -90.] U [47.9, 89.7]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\gamma [^{\circ}]
70.3 \pm 3.5
95% prob:[63, 76.5]
99% prob:[60, 80.2]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,\gamma [^{\circ}]
69.8 \pm 3.9
95% prob:[62.6, 77.6]
99% prob:[58.9, 81.5]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,\gamma [^{\circ}]



EPS - PDF - PNG - JPG - GIF




Fit Input for \,|\epsilon_{k}|
Gaussian likelihood used
2.228 \pm 0.011

EPS - PDF - PNG - JPG - GIF



Full Fit result for \,|\epsilon_{k}|
2.228 \pm 0.039
95% prob:[2.205, 2.249]
99% prob:[2.195, 2.261]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,|\epsilon_{k}|
2.04 \pm 0.19
95% prob:[1.68, 2.45]
99% prob:[1.55, 2.68]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,|\epsilon_{k}|



EPS - PDF - PNG - JPG - GIF




Fit Input for \,B(B\rightarrow\tau\nu), 10^{-4}
Gaussian likelihood used
1.14 \pm 0.22

EPS - PDF - PNG - JPG - GIF



Full Fit result for \,B(B\rightarrow\tau\nu), 10^{-4}
0.834 \pm 0.071
95% prob:[0.705, 0.985]
99% prob:[0.649, 1.069]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,B(B\rightarrow\tau\nu), 10^{-4}
0.806 \pm 0.07
95% prob:[0.677, 0.953]
99% prob:[0.626, 1.044]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,B(B\rightarrow\tau\nu), 10^{-4}



EPS - PDF - PNG - JPG - GIF




Full fit result for \,J_{cp}, 10^{-5}
3.12 \pm 0.09
95% prob:[2.948, 3.305]
99% prob:[2.862, 3.4]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,B(B_{s}\rightarrow ll), 10^{-9}
2.9 \pm 0.7

EPS - PDF - PNG - JPG - GIF



Full Fit result for \,B(B_{s}\rightarrow ll), 10^{-9}
3.865 \pm 0.155
95% prob:[3.56,4.18]
99% prob:[3.469,4.323]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,B(B_{s}\rightarrow ll), 10^{-9}
3.91 \pm 0.16
95% prob:[3.60, 4.24]
99% prob:[3.46, 4.46]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,B(B_{s}\rightarrow ll), 10^{-9}



EPS - PDF - PNG - JPG - GIF




Fit Input for \,B(B_{d}\rightarrow ll), 10^{-9}
0.37 \pm 0.15
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,B(B_{d}\rightarrow ll), 10^{-9}
0.1142 \pm 0.0069
95% prob:[0.1007, 0.1283]
99% prob:[0.0943, 0.1356]
EPS - PDF - PNG - JPG - GIF



SM Fit prediction for \,B(B_{d}\rightarrow ll), 10^{-9}
0.1145 \pm 0.007
95% prob:[0.1009, 0.1288]
99% prob:[0.0943, 0.1367]
EPS - PDF - PNG - JPG - GIF



Compatibility Plot for \,B(B_{d}\rightarrow ll), 10^{-9}



EPS - PDF - PNG - JPG - GIF




Full fit result for \,\Delta\Gamma_{d}/\Gamma_{d}
0.00516 \pm 0.00037
95% prob:[0.00448, 0.00595]
99% prob:[0.00418, 0.0064]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\Delta\Gamma_{s}/\Gamma_{s}
0.152 \pm 0.013
95% prob:[0.129, 0.179]
99% prob:[0.119, 0.194]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\beta_{s} [^{\circ}]
1.073 \pm 0.042
95% prob:[0.994, 1.161]
99% prob:[0.956, 1.208]
EPS - PDF - PNG - JPG - GIF

Parameter Input value Full fit SM Prediction
\bar{\rho} - 0.144 \pm 0.024 -
\bar{\eta} - 0.358 \pm 0.021 -
A - 0.825 \pm 0.011 -
\lambda 0.2253 \pm 0.0009 0.2254 \pm 0.0006 -
|V_{ub}| 0.00440 \pm 0.00031 0.00374 \pm 0.00013 -
|V_{cb}| 0.04170 \pm 0.00070 0.04195 \pm 0.00051 -
\alpha [^{\circ}] 90.9 \pm 8.0 89.6 \pm 3.2 86.3 \pm 3.8
\beta [^{\circ}] - 22.61 \pm 0.89 24.4 \pm 1.8
\sin(2\beta) 0.680 \pm 0.023 0.711 \pm 0.022 0.754 \pm 0.042
\cos(2\beta) 0.87 \pm 0.13 0.705 \pm 0.022 0.660 \pm 0.048
2\beta+\gamma [^{\circ}] -89 \pm 54 \text{ and } 90 \pm 54 113.4 \pm 3.5 -
\gamma [^{\circ}] -109.9 \pm 7.1 \text{ and } 70.1 \pm 7.1 67.7 \pm 3.5 -
B(B\rightarrow\tau\nu), 10^{-4} 1.14 \pm 0.22 0.889 \pm 0.078 0.806 \pm 0.070
B(B_{s}\rightarrow ll), 10^{-9} - 3.60 \pm 0.12 -
B(B_{d}\rightarrow ll), 10^{-9} - 0.1118 \pm 0.0070 -

The fit results for all the nine CKM elements are V_{CKM}=\left(\begin{array}{ccc} 0.97426 \pm 0.00011 & (0.22535 \pm 0.00059) & (0.00374 \pm 0.00013)e^{i(-68.4 \pm 3.5)^\circ}\\ ( -0.2252 \pm 0.00054)e^{i(0.0361 \pm 0.0010)^\circ} & (0.97339 \pm 0.00013)e^{i(-0.00193 \pm 0.00005)^\circ} & (0.04195 \pm 0.00051) \\ (0.00876 \pm 0.00019)e^{i(-22.60 \pm 0.87)^\circ} & (0.041245 \pm 0.000455)e^{i(1.084 \pm 0.041)^\circ} & (0.999115 \pm 0.000021)\end{array}\right)




Full fit result for \,\bar{\rho}
0.144 \pm 0.024
95% prob:[0.097, 0.190]
99% prob:[0.075, 0.212]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\bar{\eta}
0.358 \pm 0.021
95% prob:[0.328, 0.387]
99% prob:[0.315, 0.401]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\bar{\rho} - \bar{\eta}



EPS - PDF - PNG - JPG - GIF




Full fit result for \,A
0.825 \pm 0.011
95% prob:[0.803, 0.847]
99% prob:[0.792, 0.858]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,\lambda
0.2253 \pm 0.0009
95% prob:[0.2235, 0.2271]
99% prob:[0.2226, 0.228]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\lambda
0.2254 \pm 0.0006
95% prob:[0.2241, 0.2266]
99% prob:[0.2235, 0.2272]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,|V_{ub}|
Gaussian likelihood used
0.00440 \pm 0.00031

EPS - PDF - PNG - JPG - GIF



Fit Input for \,|V_{cb}|
Gaussian likelihood used
0.0417 \pm 0.0007

EPS - PDF - PNG - JPG - GIF

Parameter Input value Full fit SM Prediction
\bar{\rho} - 0.113 \pm 0.021 -
\bar{\eta} - 0.358 \pm 0.021 -
A - 0.811 \pm 0.011 -
\lambda 0.2253 \pm 0.0009 0.22535 \pm 0.00065 -
|V_{ub}| 0.00342 \pm 0.00022 0.00357 \pm 0.00011 -
|V_{cb}| 0.03955 \pm 0.00088 0.04121 \pm 0.0005 -
\alpha [^{\circ}] 90.9 \pm 8.0 85.6 \pm 2.9 86.3 \pm 3.8
\beta [^{\circ}] - 21.91 \pm 0.75 24.4 \pm 1.8
\sin(2\beta) 0.68 \pm 0.023 0.693 \pm 0.019 0.754 \pm 0.042
\cos(2\beta) 0.87 \pm 0.13 0.722 \pm 0.018 0.66 \pm 0.048
2\beta+\gamma [^{\circ}] -89 \pm 54 \text{ and } 90 \pm 54 116.1 \pm 3.1 -
\gamma [^{\circ}] -109.9 \pm 7.1 \text{ and } 70.1 \pm 7.1 72.5 \pm 3.1 -
B(B\rightarrow\tau\nu) 10^{-4} 1.14 \pm 0.22 0.818 \pm 0.065 0.806 \pm 0.07
B(B_{s}\rightarrow ll), 10^{-9} - 3.52 \pm 0.12 -
B(B_{d}\rightarrow ll), 10^{-9} - 0.1162 \pm 0.0066 -

The fit results for all the nine CKM elements are V_{CKM}=\left(\begin{array}{ccc} (0.97426 \pm 0.00014) & (0.22545 \pm 0.00059) & (0.00357 \pm 0.00011)e^{i(-72.6 \pm 3.1)^\circ}\\ ( -0.22525 \pm 0.00059)e^{i(0.03476 \pm 0.00096)^\circ} & (0.97342 \pm 0.00013)e^{i(-0.00186 \pm 0.00005)^\circ} & (0.04121 \pm 0.0005) \\ (0.00886 \pm 0.00018)e^{i(-21.93 \pm 0.73)^\circ} & ( -0.04042 \pm 0.0005)e^{i(1.08 \pm 0.033)^\circ} & (0.999142 \pm 0.000018)\end{array}\right)




Full fit result for \,\bar{\rho}
0.113 \pm 0.021
95% prob:[0.072, 0.155]
99% prob:[0.049, 0.179]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\bar{\eta}
0.358 \pm 0.021
95% prob:[0.329, 0.385]
99% prob:[0.316, 0.401]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\bar{\rho} - \bar{\eta}



EPS - PDF - PNG - JPG - GIF




Full fit result for \,A
0.811 \pm 0.011
95% prob:[0.788, 0.832]
99% prob:[0.779, 0.846]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,\lambda
0.2253 \pm 0.0009
95% prob:[0.2235, 0.2271]
99% prob:[0.2226, 0.228]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\lambda
0.22535 \pm 0.00065
95% prob:[0.2241, 0.2266]
99% prob:[0.2235, 0.2272]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,|V_{ub}|
0.00342 \pm 0.00022
95% prob:[0.00297, 0.00385]
99% prob:[0.00276, 0.00407]
EPS - PDF - PNG - JPG - GIF



Fit Input for \,|V_{cb}|
Gaussian likelihood used
0.03955 \pm 0.00088

EPS - PDF - PNG - JPG - GIF

In principle, the presence of New Physics might affect the result of the UT analysis, changing the functional dependencies of the experimental quantities upon ρ and η. On the contrary, two constraints now available, are almost unchanged by the presence of NP: |Vub/Vcb| from semileptonic B decays and the UT angle γ from B → D(*)K decays. As usual from this fit one can gets predictions for each observable related to the Unitarity Triangle. This set of values is the minimal requirement that each model describing New Physics has to satisfy in order to be taken as a realistic description of physics beyond the Standard Model.

Parameter Input value Full fit
\bar{\rho} - -0.136 \pm 0.051 \text{ and } 0.132 \pm 0.049
\bar{\eta} - -0.367 \pm 0.050 \text{ and } 0.369 \pm 0.050
\rho - 0.135 \pm 0.051
\eta - 0.378 \pm 0.050
A - 0.806 \pm 0.020
\lambda - 0.2253 \pm 0.0006
\alpha, [^{\circ}] - 86.2 \pm 7.6
\beta, [^{\circ}] - 23.1 \pm 3.0
\sin(2\beta) - 0.726 \pm 0.071
\gamma, [^{\circ}] -109.9 \pm 7.1 \text{ and } 70.1 \pm 7.1 69.4 \pm 7.1

The fit results for all the nine CKM elements are V_{CKM}=\left(\begin{array}{ccc} (0.97428 \pm 0.00014) & (0.22532 \pm 0.00063) & (0.00375 \pm 0.00046)e^{i(-69.5 \pm 7.1)^\circ}\\ ( -0.22512 \pm 0.00063)e^{i(0.0353 \pm 0.0045)^\circ} & (0.97347 \pm 0.00015)e^{i(-0.00188 \pm 0.00023)^\circ} & (0.039915 \pm 0.000015 \text{ and } 0.04092 \pm 0.00098) \\ (0.00869 \pm 0.00048 \text{ and } 0.01101 \pm 0.00050)e^{i(-23.1 \pm 2.7)^\circ} & ( -0.0398 \pm 0.0010)e^{i(1.12 \pm 0.12)^\circ} & (0.999155 \pm 0.000040)\end{array}\right)




Full fit result for \,\bar{\rho}
-0.136 \pm 0.051 \text{ and } 0.132 \pm 0.049
95% prob:[-0.23, -0.04] U [0.041, 0.238]
99% prob:[-0.28, 0.285]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\bar{\eta}
-0.367 \pm 0.050 \text{ and } 0.369 \pm 0.050
95% prob:[-0.46, -0.26] U [0.27, 0.469]
99% prob:[-0.52, -0.22] U [0.223, 0.522]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\bar{\rho} - \bar{\eta}



EPS - PDF - PNG - JPG - GIF




Full fit result for \,\rho
0.135 \pm 0.051
95% prob:[0.042, 0.245]
99% prob:[0, 0.292]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\eta
0.378 \pm 0.050
95% prob:[0.281, 0.476]
99% prob:[0.242, 0.5]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,A
0.806 \pm 0.020
95% prob:[0.766, 0.846]
99% prob:[0.746, 0.867]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\lambda
0.2253 \pm 0.0006
95% prob:[0.2241, 0.2266]
99% prob:[0.2234, 0.2272]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\alpha, [^{\circ}]
86.2 \pm 7.6
95% prob:[72.6, 102.]
99% prob:[68, 109.]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\beta, [^{\circ}]
23.1 \pm 3.0
95% prob:[17.1, 29.1]
99% prob:[15, 31.7]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\sin(2\beta)
0.726 \pm 0.071
95% prob:[0.574, 0.858]
99% prob:[0.506, 0.899]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,\gamma, [^{\circ}]
-109.9 \pm 7.1 \text{ and } 70.1 \pm 7.1
95% prob:[-124, -96.] U [54.6, 83.4]
99% prob:[-132, -90.] U [47.8, 89.7]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\gamma, [^{\circ}]
69.4 \pm 7.1
95% prob:[54.5, 83.1]
99% prob:[47.8, 90.2]
EPS - PDF - PNG - JPG - GIF

It is possible to generalize the full UTfit beyond the Standard Model to all those NP models characterized by Minimal Flavour Violation, i.e. having quark mixing ruled only by the Standard Model CKM couplings ( http://arxiv.org/abs/hep-ph/0007085). In fact, in this case no additional weak phases are generated and several observables entering into the Standard Model fit (the tree-level processes and the measurement of angles through the use of time dependent CP asymmetries) are not affected by the presence of New Physics. The only sizable effect we are sensitive to is a shift of the Inami-Lim function of the top contribution in meson mixing. This means that in general εK and Δmd cannot be used in a common SM and MFV framework. Also the ratio Δmd/Δms cannot be used in general, as Δms can get additional NP contributions at large tanβ. So, simply removing the information related to εK, Δmd and Δms from the full UTfit, one can obtain a more precise determination of the Universal Unitarity Triangle, which is a common starting point for the Standard Model and any MFV model.

Parameter Input value Full fit
\bar{\rho} - 0.135 \pm 0.029
\bar{\eta} - 0.341 \pm 0.017
\rho - 0.137 \pm 0.030
\eta - 0.349 \pm 0.016
A - 0.807 \pm 0.019
\lambda 0.2253 \pm 0.0009 0.2255 \pm 0.0005
\alpha, [^{\circ}] 90.7 \pm 7.4 89.8 \pm 4.6
\beta, [^{\circ}] - 21.45 \pm 0.87
\sin(2\beta) 0.680 \pm 0.023 0.681 \pm 0.022
\gamma, [^{\circ}] -109.9 \pm 7.1 \text{ and } 70.1 \pm 7.1 68.6 \pm 4.7

The fit results for all the nine CKM elements are V_{CKM}=\left(\begin{array}{ccc} (0.97428 \pm 0.00014) & (0.22532 \pm 0.00063) & (0.00348 \pm 0.00016)e^{i(-68.4 \pm 4.7)^\circ}\\ ( -0.22517 \pm 0.00063)e^{i(0.0328 \pm 0.0022)^\circ} & (0.97345 \pm 0.00015)e^{i(-0.00175 \pm 0.00011)^\circ} & (0.04103 \pm 0.00097) \\ (0.00859 \pm 0.00034)e^{i(-21.40 \pm 0.87)^\circ} & ( -0.04029 \pm 0.00096)e^{i(1.032 \pm 0.050)^\circ} & (0.999151 \pm 0.000039)\end{array}\right)




Full fit result for \,\bar{\rho}
0.134 \pm 0.029
95% prob:[0.078, 0.194]
99% prob:[0.050, 0.226]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\bar{\eta}
0.341 \pm 0.017
95% prob:[0.308, 0.374]
99% prob:[0.290, 0.396]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\bar{\rho} - \bar{\eta}



EPS - PDF - PNG - JPG - GIF




Full fit result for \,\rho
0.137 \pm 0.030
95% prob:[0.080, 0.199]
99% prob:[0.052, 0.231]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\eta
0.349 \pm 0.016
95% prob:[0.317, 0.383]
99% prob:[0.302, 0.403]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,A
0.808 \pm 0.020
95% prob:[0.769, 0.848]
99% prob:[0.749, 0.868]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,\lambda
0.2253 \pm 0.0009
95% prob:[0.2235, 0.2271]
99% prob:[0.2226, 0.228]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\lambda
0.2253 \pm 0.0006
95% prob:[0.2241, 0.2266]
99% prob:[0.2234, 0.2272]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,\alpha, [^{\circ}]
90.7 \pm 7.4
95% prob:[78.5, 103.] U [162, 170.]
99% prob:[72.6, 110.] U [158, 172.] U [178., 180]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\alpha, [^{\circ}]
89.8 \pm 4.6
95% prob:[81.2, 99.6]
99% prob:[76.6, 104.]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\beta, [^{\circ}]
21.45 \pm 0.87
95% prob:[19.8, 23.3]
99% prob:[19.0, 24.3]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,\sin(2\beta)
0.680 \pm 0.023
95% prob:[0.635, 0.729]
99% prob:[0.613, 0.755]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\sin(2\beta)
0.681 \pm 0.022
95% prob:[0.639, 0.728]
99% prob:[0.617, 0.752]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,\gamma, [^{\circ}]
-109.9 \pm 7.1 \text{ and } 70.1 \pm 7.1
95% prob:[-124, -96.] U [55.7, 83.7]
99% prob:[-132, -90.] U [47.9, 89.7]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\gamma, [^{\circ}]
68.6 \pm 4.7
95% prob:[59, 77.6]
99% prob:[54.2, 81.9]
EPS - PDF - PNG - JPG - GIF

Parameter Full fit
x 0.0042 \pm 0.0018
y 0.00642 \pm 0.00082
|q/p|-1 -0.015 \pm 0.077
\phi [^{\circ}] 0.32 \pm 2.62
M_{12} [ps^{-1}] 0.0052 \pm 0.0022
\Gamma_{12} [ps^{-1}] 0.0158 \pm 0.002
\Phi_{12} [^{\circ}] 2.2 \pm 11.2
A_{\Gamma} -0.0001 \pm 0.00074
A_{M} -0.027 \pm 0.155
R_{M} 0.0000281 \pm 0.0000088
R_{D} 0.0034735 \pm 0.000058
\delta_{K\pi} [^{\circ}] 11 \pm 13
\delta_{K\pi\pi^{0}} [^{\circ}] 34 \pm 22
a_{CP}^{dir}(KK) -0.0034 \pm 0.0022
a_{CP}^{dir}(\pi\pi) 0.0033 \pm 0.0024
\Delta a^{dir} -0.0068 \pm 0.0016




Full fit result for \,x
0.0042 \pm 0.0018
95% prob:[0.0003, 0.0076]
99% prob:[-0.001, 0.0094]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,y
0.00642 \pm 0.00082
95% prob:[0.00489, 0.00833]
99% prob:[0.00399, 0.0093]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,|q/p|-1
-0.015 \pm 0.077
95% prob:[-0.166, 0.172]
99% prob:[-0.244, 0.309]
EPS - PDF - PNG - JPG - GIF




Full fit result for \, \phi [^{\circ}]
0.32 \pm 2.62
95% prob:[-5., 6.6]
99% prob:[-8., 10.]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,M_{12} [ps^{-1}]
0.0052 \pm 0.0022
95% prob:[0.0007, 0.0090]
99% prob:[9e-05, 0.0110]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\Gamma_{12} [ps^{-1}]
0.0158 \pm 0.002
95% prob:[0.0120, 0.0203]
99% prob:[0.0097, 0.0227]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\Phi_{12} [^{\circ}]
2.2 \pm 11.2
95% prob:[-39, 35.]
99% prob:[-18, 97.]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,A_{\Gamma}
-0.0001 \pm 0.00074
95% prob:[-0.0015, 0.00138]
99% prob:[-0.0023, 0.00206]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,A_{M}
-0.027 \pm 0.155
95% prob:[-0.332, 0.32]
99% prob:[-0.489, 0.506]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,R_{M}
0.0000281 \pm 0.0000088
95% prob:[1.6e-05, 5.1e-05]
99% prob:[1.4e-05, 6.7e-05]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,R_{D}
0.0034735 \pm 0.000057
95% prob:[0.003360, 0.003588]
99% prob:[0.003306, 0.003647]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\delta_{K\pi} [^{\circ}]
11 \pm 13
95% prob:[-25., 33.8]
99% prob:[-47., 42.4]
EPS - PDF - PNG - JPG - GIF




Full fit result for \, \delta_{K\pi\pi^{0}} [^{\circ}]
34 \pm 22
95% prob:[-9.8, 79.6]
99% prob:[-32., 104.]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,a_{CP}^{dir}(KK)
-0.0034 \pm 0.0022
95% prob:[-0.00779, 0.0011]
99% prob:[-0.00993, 0.00338]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,a_{CP}^{dir}(\pi\pi)
0.0033 \pm 0.0024
95% prob:[-0.001, 0.0081]
99% prob:[-0.003, 0.0105]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\Delta a^{dir}
-0.0068 \pm 0.0016
95% prob:[-0.00989, -0.00364]
99% prob:[-0.01144, -0.00206]
EPS - PDF - PNG - JPG - GIF




combination charm for \,
 
EPS - PDF - PNG - JPG - GIF



combination charm for \,
 
EPS - PDF - PNG - JPG - GIF



combination charm for \,
 
EPS - PDF - PNG - JPG - GIF



combination charm for \,
 
EPS - PDF - PNG - JPG - GIF

The fit presented here is meant to constrain the NP contributions to |Δ F|=2 transitions by using the available experimental information on loop-mediated processes In general, NP models introduce a large number of new parameters: flavour changing couplings, short distance coefficients and matrix elements of new local operators. The specific list and the actual values of these parameters can only be determined within a given model. Nevertheless mixing processes are described by a single amplitude and can be parameterized, without loss of generality, in terms of two parameters, which quantify the difference of the complex amplitude with respect to the SM one. Thus, for instance, in the case of B^0_q-\bar{B}^0_q mixing we define
C_{B_q}  \, e^{2 i \phi_{B_q}} = \frac{\langle B^0_q|H_\mathrm{eff}^\mathrm{full}|\bar{B}^0_q\rangle} {\langle
              B^0_q|H_\mathrm{eff}^\mathrm{SM}|\bar{B}^0_q\rangle}\,, \qquad (q=d,s),
where H_\mathrm{eff}^\mathrm{SM} includes only the SM box diagrams, while H_\mathrm{eff}^\mathrm{full} also includes the NP contributions. In the absence of NP effects, C_{B_q}=1 and \phi_{B_q}=0 by definition. In a similar way, one can write
C_{\epsilon_K} = \frac{\mathrm{Im}[\langle
    K^0|H_{\mathrm{eff}}^{\mathrm{full}}|\bar{K}^0\rangle]}
  {\mathrm{Im}[\langle
    K^0|H_{\mathrm{eff}}^{\mathrm{SM}}|\bar{K}^0\rangle]}\,,\qquad
  C_{\Delta m_K} = \frac{\mathrm{Re}[\langle
    K^0|H_{\mathrm{eff}}^{\mathrm{full}}|\bar{K}^0\rangle]}
  {\mathrm{Re}[\langle
    K^0|H_{\mathrm{eff}}^{\mathrm{SM}}|\bar{K}^0\rangle]}\,.
  \label{eq:ceps}
Concerning \Delta m_K, to be conservative, we add to the short-distance contribution a possible long-distance one that varies with a uniform distribution between zero and the experimental value of \Delta m_K.

The experimental quantities determined from the B^0_q-\bar{B}^0_q mixings are related to their SM counterparts and the NP parameters by the following relations:

\Delta m_d^\mathrm{exp} = C_{B_d} \Delta m_d^\mathrm{SM} \,,\;    \\
\sin 2 \beta^\mathrm{exp} = \sin (2 \beta^\mathrm{SM} + 2\phi_{B_d})\,,\;   \\ 
\alpha^\mathrm{exp} =  \alpha^\mathrm{SM} - \phi_{B_d}\,,      \\
\Delta m_s^\mathrm{exp} = C_{B_s} \Delta m_s^\mathrm{SM} \,,\;   \\
\phi_s^\mathrm{exp} = (\beta_s^\mathrm{SM} - \phi_{B_s})\,,\;     \\
\Delta m_K^\mathrm{exp} = C_{\Delta m_K} \Delta m_K^\mathrm{SM} \,,\;   \\
\epsilon_K^\mathrm{exp} = C_{\epsilon_K} \epsilon_K^\mathrm{SM} \,,\;   \\

in a self-explanatory notation.

All the measured observables can be written as a function of these NP parameters and the SM ones ρ and η, and additional parameters such as masses, form factors, and decay constants.

Click on the parameter name to jump to the corresponding plot

Parameter Input value Full fit
\bar{\rho} - 0.147 \pm 0.045
\bar{\eta} - 0.368 \pm 0.048
\rho - 0.151 \pm 0.046
\eta - 0.377 \pm 0.049
A - 0.799 \pm 0.020
\lambda 0.2253 \pm 0.0009 0.2253 \pm 0.0006
C_{B_{d}} - 1.07 \pm 0.17
\phi_{B_{d}} [^{\circ}] - -2.0 \pm 3.2
C_{B_{s}} - 1.066 \pm 0.083
\phi_{B_{s}} [^{\circ}] - 0.6 \pm 2.0
C_{\epsilon_{K}} - 1.05 \pm 0.16
A_{SL_{d}} 0.0032 \pm 0.0029 -0.0019 \pm 0.0018
A_{SL_{s}} -0.0047 \pm 0.0052 -0.00011 \pm 0.00064

The fit results for all the nine CKM elements are V_{CKM}=\left(\begin{array}{ccc} (0.97428 \pm 0.00014) & (0.22527 \pm 0.00063) & (0.00376 \pm 0.00045)e^{i(-67.8 \pm 6.2)^\circ}\\ ( -0.22517 \pm 0.00063)e^{i(0.0347 \pm 0.0044)^\circ} & (0.97347 \pm 0.00015)e^{i(-0.00186 \pm 0.00022)^\circ} & (0.04061 \pm 0.00097) \\ (0.00847 \pm 0.00044)e^{i(-23.4 \pm 2.7)^\circ} & ( -0.03989 \pm 0.00095)e^{i(1.11 \pm 0.12)^\circ} & (0.999169 \pm 0.000039)\end{array}\right)




Full fit result for \,\bar{\rho}
0.147 \pm 0.045
95% prob:[0.065, 0.235]
99% prob:[0.034, 0.288]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\bar{\eta}
0.368 \pm 0.048
95% prob:[0.272, 0.466]
99% prob:[0.220, 0.525]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\bar{\rho} - \bar{\eta}



EPS - PDF - PNG - JPG - GIF




Full fit result for \,\rho
0.151 \pm 0.046
95% prob:[0.066, 0.241]
99% prob:[0.035, 0.295]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\eta
0.377 \pm 0.049
95% prob:[0.279, 0.478]
99% prob:[0.225, 0.538]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,A
0.799 \pm 0.020
95% prob:[0.76, 0.839]
99% prob:[0.741, 0.859]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,\lambda
0.2253 \pm 0.0009
95% prob:[0.2235, 0.2271]
99% prob:[0.2226, 0.228]
EPS - PDF - PNG - JPG - GIF



Full Fit result for \,\lambda
0.2253 \pm 0.0006
95% prob:[0.224, 0.2265]
99% prob:[0.2234, 0.2272]
EPS - PDF - PNG - JPG - GIF




Full fit result for \,\Phi^{NP}_{B_{d}} - A^{NP}_{d}/A^{SM}_{d}
 
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\Phi^{NP}_{B_{s}} - A^{NP}_{d}/A^{SM}_{s}
 
EPS - PDF - PNG - JPG - GIF




Full fit result for \,C_{B_{d}}
1.07 \pm 0.17
95% prob:[0.77, 1.44]
99% prob:[0.65, 1.69]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\phi_{B_{d}} [^{\circ}]
-2.0 \pm 3.2
95% prob:[-8., 4.2]
99% prob:[-12, 7.8]
EPS - PDF - PNG - JPG - GIF



correlations for \,\Phi_{B_{d}} - C_{B_{d}}



EPS - PDF - PNG - JPG - GIF




Full fit result for \,C_{B_{s}}
1.066 \pm 0.083
95% prob:[0.912, 1.245]
99% prob:[0.847, 1.351]
EPS - PDF - PNG - JPG - GIF



Full fit result for \,\phi_{B_{s}} [^{\circ}]
0.6 \pm 2.0
95% prob:[-3., 4.6]
99% prob:[-5., 6.7]
EPS - PDF - PNG - JPG - GIF



correlations for \,\Phi_{B_{s}} - C_{B_{s}}



EPS - PDF - PNG - JPG - GIF




Full fit result for \,C_{\epsilon_{K}}
1.05 \pm 0.16
95% prob:[0.77, 1.41]
99% prob:[0.66, 1.73]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,A_{SL_{d}}
Gaussian likelihood used
0.0032 \pm 0.0029

EPS - PDF - PNG - JPG - GIF



Full Fit result for \,A_{SL_{d}}
-0.0019 \pm 0.0018
95% prob:[-0.0057, 0.00128]
99% prob:[-0.0074, 0.00336]
EPS - PDF - PNG - JPG - GIF




Fit Input for \,A_{SL_{s}}
Gaussian likelihood used
-0.0047 \pm 0.0052

EPS - PDF - PNG - JPG - GIF



Full Fit result for \,A_{SL_{s}}
-0.00011 \pm 0.00064
95% prob:[-0.0013, 0.00114]
99% prob:[-0.0019, 0.00181]
EPS - PDF - PNG - JPG - GIF

 
  Powered by
Foswiki
Ideas, requests, problems regarding this web site? Send feedback